博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Flink源码分析 - 剖析一个简单的Flink程序
阅读量:5343 次
发布时间:2019-06-15

本文共 12903 字,大约阅读时间需要 43 分钟。

本篇文章首发于头条号,欢迎关注和微信公众号“大数据技术和人工智能”(微信搜索bigdata_ai_tech)获取更多干货,也欢迎关注我的。

在这之前已经介绍了和,这篇文章用官方提供的SocketWindowWordCount例子来解析一下一个常规Flink程序的每一个基本步骤。

示例程序

public class SocketWindowWordCount {    public static void main(String[] args) throws Exception {        // the host and the port to connect to        final String hostname;        final int port;        try {            final ParameterTool params = ParameterTool.fromArgs(args);            hostname = params.has("hostname") ? params.get("hostname") : "localhost";            port = params.getInt("port");        } catch (Exception e) {            System.err.println("No port specified. Please run 'SocketWindowWordCount " +                    "--hostname 
--port
', where hostname (localhost by default) " + "and port is the address of the text server"); System.err.println("To start a simple text server, run 'netcat -l
' and " + "type the input text into the command line"); return; } // get the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // get input data by connecting to the socket DataStream
text = env.socketTextStream(hostname, port, "\n"); // parse the data, group it, window it, and aggregate the counts DataStream
windowCounts = text .flatMap(new FlatMapFunction
() { @Override public void flatMap(String value, Collector
out) { for (String word : value.split("\\s")) { out.collect(new WordWithCount(word, 1L)); } } }) .keyBy("word") .timeWindow(Time.seconds(5)) .reduce(new ReduceFunction
() { @Override public WordWithCount reduce(WordWithCount a, WordWithCount b) { return new WordWithCount(a.word, a.count + b.count); } }); // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); } // ------------------------------------------------------------------------ /** * Data type for words with count. */ public static class WordWithCount { public String word; public long count; public WordWithCount() {} public WordWithCount(String word, long count) { this.word = word; this.count = count; } @Override public String toString() { return word + " : " + count; } }}

上面这个是官网的SocketWindowWordCount程序示例,它首先从命令行中获取socket连接的host和port,然后获取执行环境、从socket连接中读取数据、解析和转换数据,最后输出结果数据。

每个Flink程序都包含以下几个相同的基本部分:

  1. 获得一个execution environment,
  2. 加载/创建初始数据,
  3. 指定此数据的转换,
  4. 指定放置计算结果的位置,
  5. 触发程序执行

Flink执行环境

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Flink程序都是从这句代码开始,这行代码会返回一个执行环境,表示当前执行程序的上下文。如果程序是独立调用的,则此方法返回一个由createLocalEnvironment()创建的本地执行环境LocalStreamEnvironment。从其源码里可以看出来:

//代码目录:org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.javapublic static StreamExecutionEnvironment getExecutionEnvironment() {    if (contextEnvironmentFactory != null) {        return contextEnvironmentFactory.createExecutionEnvironment();    }    ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();    if (env instanceof ContextEnvironment) {        return new StreamContextEnvironment((ContextEnvironment) env);    } else if (env instanceof OptimizerPlanEnvironment || env instanceof PreviewPlanEnvironment) {        return new StreamPlanEnvironment(env);    } else {        return createLocalEnvironment();    }}

获取输入数据

DataStream
text = env.socketTextStream(hostname, port, "\n");

这个例子里的源数据来自于socket,这里会根据指定的socket配置创建socket连接,然后创建一个新数据流,包含从套接字无限接收的字符串,接收的字符串由系统的默认字符集解码。当socket连接关闭时,数据读取会立即终止。通过查看源码可以发现,这里实际上是通过指定的socket配置来构造一个SocketTextStreamFunction实例,然后源源不断的从socket连接里读取输入的数据创建数据流。

//代码目录:org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java@PublicEvolvingpublic DataStreamSource
socketTextStream(String hostname, int port, String delimiter, long maxRetry) { return addSource(new SocketTextStreamFunction(hostname, port, delimiter, maxRetry), "Socket Stream");}

SocketTextStreamFunction的类继承关系如下:

SocketTextStreamFunction类关系图

可以看出SocketTextStreamFunctionSourceFunction的子类,SourceFunction是Flink中所有流数据源的基本接口。SourceFunction的定义如下:

//代码目录:org/apache/flink/streaming/api/functions/source/SourceFunction.java@Publicpublic interface SourceFunction
extends Function, Serializable { void run(SourceContext
ctx) throws Exception; void cancel(); @Public interface SourceContext
{ void collect(T element); @PublicEvolving void collectWithTimestamp(T element, long timestamp); @PublicEvolving void emitWatermark(Watermark mark); @PublicEvolving void markAsTemporarilyIdle(); Object getCheckpointLock(); void close(); }}

SourceFunction定义了runcancel两个方法和SourceContext内部接口。

  • run(SourceContex):实现数据获取逻辑,并可以通过传入的参数ctx进行向下游节点的数据转发。
  • cancel():用来取消数据源,一般在run方法中,会存在一个循环来持续产生数据,cancel方法则可以使该循环终止。
  • SourceContext:source函数用于发出元素和可能的watermark的接口,返回source生成的元素的类型。

了解了SourceFunction这个接口,再来看下SocketTextStreamFunction的具体实现(主要是run方法),逻辑就已经很清晰了,就是从指定的hostname和port持续不断的读取数据,按回车换行分隔符划分成一个个字符串,然后再将数据转发到下游。现在回到StreamExecutionEnvironmentsocketTextStream方法,它通过调用addSource返回一个DataStreamSource实例。思考一下,例子里的text变量是DataStream类型,为什么源码里的返回类型却是DataStreamSource呢?这是因为DataStreamDataStreamSource的父类,下面的类关系图可以看出来,这也体现出了Java的多态的特性。

DataStreamSource类关系图

数据流操作

对上面取到的DataStreamSource,进行flatMapkeyBytimeWindowreduce转换操作。

DataStream
windowCounts = text .flatMap(new FlatMapFunction
() { @Override public void flatMap(String value, Collector
out) { for (String word : value.split("\\s")) { out.collect(new WordWithCount(word, 1L)); } } }) .keyBy("word") .timeWindow(Time.seconds(5)) .reduce(new ReduceFunction
() { @Override public WordWithCount reduce(WordWithCount a, WordWithCount b) { return new WordWithCount(a.word, a.count + b.count); } });

这段逻辑中,对上面取到的DataStreamSource数据流分别做了flatMapkeyBytimeWindowreduce四个转换操作,下面说一下flatMap转换,其他三个转换操作读者可以试着自己查看源码理解一下。

先看一下flatMap方法的源码吧,如下。

//代码目录:org/apache/flink/streaming/api/datastream/DataStream.javapublic 
SingleOutputStreamOperator
flatMap(FlatMapFunction
flatMapper) { TypeInformation
outType = TypeExtractor.getFlatMapReturnTypes(clean(flatMapper), getType(), Utils.getCallLocationName(), true); return transform("Flat Map", outType, new StreamFlatMap<>(clean(flatMapper)));}

这里面做了两件事,一是用反射拿到了flatMap算子的输出类型,二是生成了一个operator。flink流式计算的核心概念就是将数据从输入流一个个传递给operator进行链式处理,最后交给输出流的过程。对数据的每一次处理在逻辑上成为一个operator。上面代码中的最后一行transform方法的作用是返回一个SingleOutputStreamOperator,它继承了Datastream类并且定义了一些辅助方法,方便对流的操作。在返回之前,transform方法还把它注册到了执行环境中。下面这张图是一个由Flink程序映射为Streaming Dataflow的示意图:

Flink基本编程模型

结果输出

windowCounts.print().setParallelism(1);

每个Flink程序都是以source开始以sink结尾,这里的print方法就是把计算出来的结果sink标准输出流。在实际开发中,一般会通过官网提供的各种Connectors或者自定义的Connectors把计算好的结果数据sink到指定的地方,比如Kafka、HBase、FileSystem、Elasticsearch等等。这里的setParallelism是设置此接收器的并行度的,值必须大于零。

执行程序

env.execute("Socket Window WordCount");

Flink有远程模式和本地模式两种执行模式,这两种模式有一点不同,这里按本地模式来解析。先看下execute方法的源码,如下:

//代码目录:org/apache/flink/streaming/api/environment/LocalStreamEnvironment.java@Overridepublic JobExecutionResult execute(String jobName) throws Exception {    // transform the streaming program into a JobGraph    StreamGraph streamGraph = getStreamGraph();    streamGraph.setJobName(jobName);    JobGraph jobGraph = streamGraph.getJobGraph();    jobGraph.setAllowQueuedScheduling(true);    Configuration configuration = new Configuration();    configuration.addAll(jobGraph.getJobConfiguration());    configuration.setString(TaskManagerOptions.MANAGED_MEMORY_SIZE, "0");    // add (and override) the settings with what the user defined    configuration.addAll(this.configuration);    if (!configuration.contains(RestOptions.BIND_PORT)) {        configuration.setString(RestOptions.BIND_PORT, "0");    }    int numSlotsPerTaskManager = configuration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS, jobGraph.getMaximumParallelism());    MiniClusterConfiguration cfg = new MiniClusterConfiguration.Builder()        .setConfiguration(configuration)        .setNumSlotsPerTaskManager(numSlotsPerTaskManager)        .build();    if (LOG.isInfoEnabled()) {        LOG.info("Running job on local embedded Flink mini cluster");    }    MiniCluster miniCluster = new MiniCluster(cfg);    try {        miniCluster.start();        configuration.setInteger(RestOptions.PORT, miniCluster.getRestAddress().get().getPort());        return miniCluster.executeJobBlocking(jobGraph);    }    finally {        transformations.clear();        miniCluster.close();    }}

这个方法包含三部分:将流程序转换为JobGraph、使用用户定义的内容添加(或覆盖)设置、启动一个miniCluster并执行任务。关于JobGraph暂先不讲,这里就只说一下执行任务,跟进下return miniCluster.executeJobBlocking(jobGraph);这行的源码,如下:

//代码目录:org/apache/flink/runtime/minicluster/MiniCluster.java@Overridepublic JobExecutionResult executeJobBlocking(JobGraph job) throws JobExecutionException, InterruptedException {    checkNotNull(job, "job is null");    final CompletableFuture
submissionFuture = submitJob(job); final CompletableFuture
jobResultFuture = submissionFuture.thenCompose( (JobSubmissionResult ignored) -> requestJobResult(job.getJobID())); final JobResult jobResult; try { jobResult = jobResultFuture.get(); } catch (ExecutionException e) { throw new JobExecutionException(job.getJobID(), "Could not retrieve JobResult.", ExceptionUtils.stripExecutionException(e); } try { return jobResult.toJobExecutionResult(Thread.currentThread().getContextClassLoader()); } catch (IOException | ClassNotFoundException e) { throw new JobExecutionException(job.getJobID(), e); }}

这段代码的核心逻辑就是final CompletableFuture<JobSubmissionResult> submissionFuture = submitJob(job);,调用了MiniCluster类的submitJob方法,接着看这个方法:

//代码目录:org/apache/flink/runtime/minicluster/MiniCluster.javapublic CompletableFuture
submitJob(JobGraph jobGraph) { final CompletableFuture
dispatcherGatewayFuture = getDispatcherGatewayFuture(); // we have to allow queued scheduling in Flip-6 mode because we need to request slots // from the ResourceManager jobGraph.setAllowQueuedScheduling(true); final CompletableFuture
blobServerAddressFuture = createBlobServerAddress(dispatcherGatewayFuture); final CompletableFuture
jarUploadFuture = uploadAndSetJobFiles(blobServerAddressFuture, jobGraph); final CompletableFuture
acknowledgeCompletableFuture = jarUploadFuture .thenCombine( dispatcherGatewayFuture, (Void ack, DispatcherGateway dispatcherGateway) -> dispatcherGateway.submitJob(jobGraph, rpcTimeout)) .thenCompose(Function.identity()); return acknowledgeCompletableFuture.thenApply( (Acknowledge ignored) -> new JobSubmissionResult(jobGraph.getJobID()));}

这里的Dispatcher组件负责接收作业提交,持久化它们,生成JobManagers来执行作业并在主机故障时恢复它们。Dispatcher有两个实现,在本地环境下启动的是MiniDispatcher,在集群环境上启动的是StandaloneDispatcher。下面是类结构图:

MiniDispatcher类结构图

这里的Dispatcher启动了一个JobManagerRunner,委托JobManagerRunner去启动该Job的JobMaster。对应的代码如下:

//代码目录:org/apache/flink/runtime/jobmaster/JobManagerRunner.javaprivate CompletableFuture
verifyJobSchedulingStatusAndStartJobManager(UUID leaderSessionId) { final CompletableFuture
jobSchedulingStatusFuture = getJobSchedulingStatus(); return jobSchedulingStatusFuture.thenCompose( jobSchedulingStatus -> { if (jobSchedulingStatus == JobSchedulingStatus.DONE) { return jobAlreadyDone(); } else { return startJobMaster(leaderSessionId); } });}

JobMaster经过一系列方法嵌套调用之后,最终执行到下面这段逻辑:

//代码目录:org/apache/flink/runtime/jobmaster/JobMaster.javaprivate void scheduleExecutionGraph() {    checkState(jobStatusListener == null);    // register self as job status change listener    jobStatusListener = new JobManagerJobStatusListener();    executionGraph.registerJobStatusListener(jobStatusListener);    try {        executionGraph.scheduleForExecution();    }    catch (Throwable t) {        executionGraph.failGlobal(t);    }}

这里executionGraph.scheduleForExecution();调用了ExecutionGraph的启动方法。在Flink的图结构中,ExecutionGraph是真正被执行的地方,所以到这里为止,一个任务从提交到真正执行的流程就结束了,下面再回顾一下本地环境下的执行流程:

  1. 客户端执行execute方法;
  2. MiniCluster完成了大部分任务后把任务直接委派给MiniDispatcher
  3. Dispatcher接收job之后,会实例化一个JobManagerRunner,然后用这个实例启动job;
  4. JobManagerRunner接下来把job交给JobMaster去处理;
  5. JobMaster使用ExecutionGraph的方法启动整个执行图,整个任务就启动起来了。

转载于:https://www.cnblogs.com/cjblogs/p/10978975.html

你可能感兴趣的文章
解决响应式布局下兼容性的问题
查看>>
京东静态网页练习记录
查看>>
使用DBCP连接池对连接进行管理
查看>>
【洛谷】【堆+模拟】P2278 操作系统
查看>>
hdu3307 欧拉函数
查看>>
Spring Bean InitializingBean和DisposableBean实例
查看>>
Solr4.8.0源码分析(5)之查询流程分析总述
查看>>
[Windows Server]安装系统显示“缺少计算机所需的介质驱动程序”解决方案
查看>>
[容斥][dp][快速幂] Jzoj P5862 孤独
查看>>
Lucene 学习之二:数值类型的索引和范围查询分析
查看>>
软件开发工作模型
查看>>
Java基础之字符串匹配大全
查看>>
面向对象
查看>>
lintcode83- Single Number II- midium
查看>>
移动端 响应式、自适应、适配 实现方法分析(和其他基础知识拓展)
查看>>
selenium-窗口切换
查看>>
使用vue的v-model自定义 checkbox组件
查看>>
[工具] Sublime Text 使用指南
查看>>
Hangfire在ASP.NET CORE中的简单实现方法
查看>>
Algorithm——何为算法?
查看>>